Goldwater Scholarship – Fordham Now https://now.fordham.edu The official news site for Fordham University. Thu, 25 Apr 2024 16:29:00 +0000 en-US hourly 1 https://now.fordham.edu/wp-content/uploads/2015/01/favicon.png Goldwater Scholarship – Fordham Now https://now.fordham.edu 32 32 232360065 Two Fordham Students Awarded Prestigious Goldwater Scholarship for STEM Research https://now.fordham.edu/science-and-technology/two-fordham-students-awarded-prestigious-goldwater-scholarship-for-stem-research/ Wed, 24 Apr 2024 13:31:00 +0000 https://now.fordham.edu/?p=188829 Two Fordham College at Rose Hill students—Mary Biggs and Clara Victorio—were chosen to receive the Goldwater Scholarship, the most prestigious national award for undergraduates pursuing STEM research.

Lorna Ronald, Ph.D., director of the Office of Prestigious Fellowships, said the students’ early start in the lab, as well as their close collaboration with faculty, were significant factors in receiving the award, which is granted to sophomores and juniors.

“The Goldwater Foundation is looking for students who will become our nation’s leaders in STEM research, so they’re interested in students who have already made an impact, sharing their findings at conferences and in publications,” Ronald said. “Our two Goldwater scholars started undergraduate early and have great mentors. Both Dr. Ipsita Banerjee and Dr. Nicholas Sawyer have worked closely with these students to enable them to produce national quality research as undergraduates.”

Researching Natural ‘Chemo-Targeting Devices’

Biggs’s research explores how proteins (and peptides) can be designed from natural products—or molecules that are produced by living organisms such as bacteria, fungi, fish, mollusks and plants—can be used as “tumor-targeting devices.”

“The goal is to be able to specifically target therapeutics to the tumors, so that it avoids damage to non-cancer cells, and mitigate the side effects that chemotherapy is known for,” said Biggs, a junior majoring in biochemistry.

Biggs and Banerjee grew replica multi-cellular miniature tumors as models in the lab to test their newly designed molecules and examine mechanisms of drug delivery into the tumors. This summer, she’s going to continue her work, this time with ovarian tumors and “other naturally derived cancer targeting molecules.”

“It’s just been wild to be an undergraduate and to have access to these kinds of research opportunities,” she said.

Biggs joined Banerjee’s lab her first year, after going to talk with her about declaring her major.

“She is fantastic,” Banerjee said. “She was always interested in natural product work and the applications of biochemistry and chemistry. She’s a quick learner and one thing I look for in my students is ambition and passion for research. She has the ambition, the motivation, perseverance and she’s very detail oriented.”

The Role of Shapes in Chemistry

Victorio, who will earn one bachelor’s degree in chemistry from Fordham University and a second bachelor’s degree from Columbia University in chemical engineering as a part of Fordham’s 3-2 cooperative program in engineering, was nominated for the Goldwater award through Columbia.

Sawyer said that he and the students in his lab work on developing peptides—short chains of amino acids—that act as treatments and gain access to the cell’s interior.

“What Clara set out to do is help us, as a scientific community, develop a fundamental understanding of how shape plays a role in how peptides enter cells,” he said.

Victorio’s work included an accidental discovery: She set out to take a peptide that had one shape and turn it into a second type of shape, but her work showed that it can actually make a third shape as well.

“It’s really rewarding when a reaction works as expected, because it doesn’t always do that,” she said with a smile. “But, some of the results of the reactions were surprising, and they spun into these whole new avenues.”

Sawyer said that Victorio’s work is at the center of a collaboration with colleagues from the University of Missouri, where they’re continuing to study “where this third shape comes from, and what the factors are that contributed to making that happen.”

]]>
188829